The SEB113 teaching team last semester (me, Ruth Luscombe, Iwona Czaplinski, Brett Fyfield) wrote a paper for the HERDSA conference about the relationship between student engagement and success. We collected data on the timing of students’ use of the adaptive release tool we developed, where students confirm that they’ve seen some preparatory material before being given access to the lecture, computer lab and workshop material. We built a regression model that looked at the relationship between the number of weeks of material students gave themselves access to and their end of semester marks (out of 100%), and it showed that students who engaged more obtained better marks, where engagement also included active use of the Facebook group and attendance at workshop classes. I had assumed that we’d be able to get data on students’ maths backgrounds coming in, but with so many ways to enter university, we don’t have the background info on every student. QUT has set Queensland Senior Maths B as the assumed knowledge for SEB113 (and indeed the broader ST01 Bachelor of Science degree) and I’m interested in knowing whether or not the level of maths of students coming in has a bearing on how well they do over the course of the unit.

This semester, we decided that it’d be good to not just get a sense of the students’ educational backgrounds but to assess what their level of mathematical and statistical skills are. We designed a diagnostic to run in the first lecture that would canvas students on their educational background, their attitudes towards mathematics and statistics, and how well they could answer a set of questions that a student passing Senior Maths B would be able to complete. The questions were taken from the PhD thesis of Dr Therese Wilson and research published by Dr Helen MacGillivray (both at QUT), so I’m fairly confident we’re asking the right questions. One thing I really liked about Dr MacGillivray’s diagnostic tool, a multiple choice test designed for engineering students, is that each incorrect choice is wrong for a very specific reason, such as not getting the order of operations right, not recognising something as a difference of squares, etc.

I’m about to get the scanned and processed results back from the library and it turns out that a number of students didn’t put their name or student number on the answer sheet. Some put their names down but didn’t fill in the circles, so the machine that scans the answer sheet won’t be able to determine who the student is and it’ll take some manual data entry probably on my part to ensure that we can get as many students as possible the results of their diagnostic. So while I’ll have a good sense of the class overall, and how we need to support them, it’ll be harder than it should be to ensure that the people who need the help are able to be targetted for such help.

Next semester I’ll try to run the same sort of thing, perhaps with a few modifications. We’ll need to be very clear about entering student numbers and names so that we can get everyone their own results. It’d be good to write a paper that follows on from our HERDSA paper and includes more information about educational background. It might also be interesting to check the relationship between students’ strength in particular topics (e.g. calculus, probability) and their marks on the corresponding items of assessment. Getting it right next semester and running it again in Semester 1 2017 would be a very useful way of gauging whether students who are weak in particular topics struggle to do well on certain pieces of assessment.